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It has been almost a decade since the molecular cloning of all four members of the proteinase-activated receptor (PAR) family
was completed. This unique family of G protein-coupled receptors (GPCRs) mediates specific cellular actions of various
endogenous proteinases including thrombin, trypsin, tryptase, etc. and also certain exogenous enzymes. Increasing evidence
has been clarifying the emerging roles played by PARs in health and disease. PARs, particularly PAR1 and PAR2, are distributed
throughout the gastrointestinal (GI) tract, modulating various GI functions. One of the most important GI functions of PARs is
regulation of exocrine secretion in the salivary glands, pancreas and GI mucosal epithelium. PARs also modulate motility of GI
smooth muscle, involving multiple mechanisms. PAR2 appears to play dual roles in pancreatitis and related pain, being pro-
inflammatory/pro-nociceptive and anti-inflammatory/anti-nociceptive. Similarly, dual roles for PAR1 and PAR2 have been
demonstrated in mucosal inflammation/damage throughout the GI tract. There is also fundamental and clinical evidence for
involvement of PAR2 in colonic pain. PARs are thus considered key molecules in regulation of GI functions and targets for
development of drugs for treatment of various GI diseases.
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Introduction

The proteinase-activated receptor (PAR) is a unique family of

G-protein-coupled seven transmembrane domain receptors

(GPCRs) that have relatively long N-terminal domains,

compared with other GPCRs. It has been more than a decade

and a half since the first molecular cloning of PAR1, a

thrombin receptor, was carried out (Vu et al., 1991a, b).

Cloning of all other members of the PAR receptor family,

that is, PAR2, PAR3 and PAR4, was not completed until 1998

(Nystedt et al., 1994; Ishihara et al., 1997; Kahn et al., 1998;

Xu et al., 1998). PAR3 and PAR4 are also activated by

thrombin, whereas PAR2 does not respond to thrombin at all

(Hollenberg et al., 1997; Kawabata et al., 1999b; Kawabata,

2002). Although PAR2 was originally believed to be a

receptor just for trypsin and mast cell tryptase (Nystedt

et al., 1994; Molino et al., 1997), a number of endogenous

and exogenous proteinases including kallikreins and mite

allergens are now known to stimulate PAR2 (Sun et al., 2001;

Kawabata, 2002; Ossovskaya and Bunnett, 2004; Hansen

et al., 2005; Hollenberg, 2005; Oikonomopoulou et al.,

2006a, b). The unique activation mechanisms for PARs are

as follows: (1) agonist proteinases unmask the cryptic

receptor-activating peptide sequence present in the extra-

cellular N-terminal domain of each PAR, leading to cell

signalling via interaction of the exposed tethered ligand with

the body of the receptor itself; and (2) synthetic peptides as

short as 5–6 amino acids, on the basis of tethered ligand

sequences, are capable of binding to PARs, mimicking the

actions of agonist proteinases, in the case of PAR1, PAR2 and

PAR4 (Kawabata, 2002; Ossovskaya and Bunnett, 2004;

Hollenberg, 2005). In contrast, synthetic peptides based on

the presumed N-terminal PAR3-activating sequence are

incapable of causing PAR3 signalling, and the physiological

significance of PAR3 is not well understood (Kawabata, 2002;

Ossovskaya and Bunnett, 2004; Hollenberg, 2005). Interest-

ingly, PAR3 could be a cofactor for activation of PAR4 by

thrombin (Nakanishi-Matsui et al., 2000), and might also

regulate PAR1 signalling by receptor dimerization (McLaughlin

et al., 2007). Common major cell signals triggered by

activation of distinct PARs are activation of phospholipase Cb
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via Gq/11 proteins, leading to the formation of inositol

triphosphate followed by Ca2þ mobilization and diacylglycer-

ol-mediated activation of PKC. However, it is now known that

a variety of signalling pathways other than activation of

phospholipase Cb can also be stimulated by the activation of

PARs, which are different depending on types of PARs and

cells/tissues (Kawabata, 2002; Ossovskaya and Bunnett,

2004; Hollenberg, 2005; Kawao et al., 2005; Sekiguchi et al.,

2007).

Since selective and potent antagonists of PARs, particularly

PAR2, have not been easily available, lessons from studies

using receptor-activating peptides and genetically receptor-

deficient mice have greatly contributed to elucidation of

functions of PARs. Increasing evidence has demonstrated

emerging roles for PARs in the mammalian body. PARs,

particularly PAR1 and PAR2, are distributed throughout the

gastrointestinal (GI) tract, and are now considered key

molecules in regulation of GI functions and in the

pathogenesis of GI diseases. Here we focus on GI roles of

PARs in health and disease. Currently available clinical

aspects on PARs are also mentioned in this review.

Major GI functions of PARs

PAR2 and exocrine secretion

One of the most important functions of PAR2 in the

mammalian body, particularly in the GI system, is regulation

of glandular exocrine secretion (Figure 1). PAR2-mediated

release of amylase from isolated rat pancreatic acini was first

described by Bohm et al. (1996), and PAR2 is now recognized

as one of the key molecules in regulation of pancreatic

exocrine secretion (Nguyen et al., 1999; Kawabata et al.,

2000c, d, 2002b; Singh et al., 2007). PAR2 agonists, in a

manner dependent on cytosolic Ca2þ mobilization, enhance

not only protein secretion by acinar cells (Sharma et al.,

2005b), but also transport of ions such as Cl� and Kþ in

pancreatic ductal epithelial cells, possibly through inter-

action with basolateral PAR2 (Nguyen et al., 1999). Basolat-

eral application of PAR2 agonists also increases bicarbonate

(HCO3
�) secretion by pancreatic ductal cells (Namkung et al.,

2004) (Figure 1), although activation of apical PAR2 might

suppress ductal secretion of HCO3
� (Alvarez et al., 2004).

PAR2-activating peptides cause prompt salivation in vivo

(Kawabata et al., 2000c) and secretion of proteins including

amylase and mucin in isolated rat parotid and sublingual

glands, respectively, in vitro (Kawabata et al., 2000c, d)

(Figure 1). Ultimate evidence for roles of PAR2 in salivary

exocrine secretion has been obtained by a study employing

PAR2-knockout mice (Kawabata et al., 2004b). Interestingly,

PAR2-mediated salivary exocrine secretion is enhanced in

M3-acetylcholine receptor-deficient mice (Nishiyama et al.,

2007), implying that PAR2 might compensate for impaired

salivary function due to M3 receptor deficiency. If this is

the case in humans, PAR2 could be a target for development

of drugs for treatment of dysfunctions of salivary secretion

such as dry mouth. Further, since PAR2-related peptides

are capable of causing tear secretion through both

PAR2-dependent and -independent mechanisms (Nishikawa

et al., 2005), PAR2 agonists might be suitable for

the treatment of exocrine dysfunction such as Sjögren

syndrome.

Evidence suggests that PAR2 plays an emerging role in the

regulation of exocrine secretion in gastric mucosa (Figure 1).

Our immunohistochemical study (Kawao et al., 2002a)

indicates that PAR2 is particularly abundant in rat gastric

mucosal chief cells. Actually, PAR2 agonists elicit secretion of

pepsinogen into the gastric lumen in vivo, an effect resistant

to omeprazole, a proton-pump inhibitor (PPI), NG-nitro-L-

arginine methyl ester, an NOS inhibitor, or atropine, a

muscarinic receptor antagonist (Kawao et al., 2002a). PAR2-

triggered pepsinogen secretion has also been confirmed in

guinea pig gastric-isolated chief cells, and involvement of

cytosolic Ca2þ mobilization, and activation of the MEK–ERK

pathway in the secretory mechanisms has been suggested

(Fiorucci et al., 2003). Functional PAR2 appears to be

expressed in capsaicin-sensitive sensory neurons in rat

gastric mucosa (Kawabata, 2002), although PAR2 immuno-

staining of the nerve endings in the gastric mucosa has not

been successful (Kawao et al., 2002a). PAR2 agonists trigger

gastric mucus secretion in anaesthetized rats, an effect that is

abolished by ablation of sensory neurons by pretreatment

with capsaicin, and by antagonists of CGRP1 receptors and of

NK2 receptors for tachykinins (Kawabata et al., 2001b). These

findings are consistent with evidence that exogenously

applied CGRP and neurokinin A stimulate synthesis and/or

release of gastric mucus (Ichikawa et al., 2000; Kawabata

et al., 2001b). In contrast, systemic administration of PAR2

agonists suppresses gastric acid secretion caused by carba-

chol, pentagastrin or 2-deoxy-D-glucose, an effect that is

resistant to pretreatment with indomethacin or ablation of

capsaicin-sensitive sensory neurons (Nishikawa et al., 2002).

The precise mechanisms for the PAR2-mediated suppression

of acid secretion are still open to question.

PAR2 is also expressed in intestinal epithelial cells (Kong

et al., 1997; Green et al., 2000). In isolated segments of rat

jejunum, serosal application of agonists for PAR2 stimulates

Cl� secretion through prostanoid formation, which is

independent of enteric nerves (Vergnolle et al., 1998)

(Figure 1). There is also evidence that basolateral PAR2

stimulation induces neurally independent Cl� secretion in

human and mouse colon in vitro (Cuffe et al., 2002; Mall

et al., 2002) (Figure 1). In contrast, luminal activation of

PAR2 in mouse colon appears to increase colonic paracellular

permeability (Cenac et al., 2004; Roka et al., 2007). Most

recently, PAR2 regulation of electrolyte secretion has also

been described in the gallbladder. In the gallbladder of wild-

type, but not PAR2-knockout mice, serosally applied PAR2

agonists cause HCO3
� secretion (Figure 1), which is indepen-

dent of prostanoids (Kirkland et al., 2007). Thus, PAR2 is

considered as a key molecule in regulation of epithelial ion

transport in the alimentary system.

Do thrombin receptors (PAR1 and PAR4) play roles in regulation

of exocrine secretion?

Unlike PAR2, none of the thrombin receptors including

PAR1 and PAR4 is involved in the regulation of salivary or

pancreatic exocrine secretion (Nguyen et al., 1999; Kawabata

et al., 2000c, d). In gastric mucosa, however, agonists of PAR1
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suppress carbachol-evoked gastric acid secretion through

COX-1-dependent formation of prostaglandins (Kawabata

et al., 2004d). Since immunoreactive PAR1 and COX-1 are

colocalized in the muscularis mucosae of rats and humans

(Kawabata et al., 2004d), it is hypothesized that prostanoids

derived from the muscularis mucosae in response to PAR1

stimulation might contribute to suppression of the gastric

acid secretion. Although PAR1 agonists also facilitate
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pepsinogen secretion in vivo (Kawao et al., 2003), gastric

mucosal chief cells themselves do not appear to express

PAR1. PAR1 is expressed on both the basolateral and apical

sides of SCBN, a novel nontransformed human duodenal

epithelial cell line. Stimulation of basolateral PAR1 causes

apically directed Cl� secretion (Buresi et al., 2002), while

stimulation of apical PAR1 results in apoptosis and increases

in epithelial monolayer permeability (Chin et al., 2003).

PAR1 is also expressed on submucosal secretomotor neurons

in mouse colon, and its activation suppresses neurally

evoked Cl� secretion (Buresi et al., 2005). To our best

knowledge, PAR4 does not appear to play significant roles

in GI exocrine secretion.

PARs and modulation of GI smooth muscle motility

PAR1, PAR2 and PAR4 are expressed in smooth muscle cells

and/or their adjacent cells in the GI tract, modulating

smooth muscle motility. The roles of PARs in motility

modulation are highly complex, and are greatly different

depending on species and organs. Both PAR2 and PAR1

agonists cause strong constriction in isolated mouse gastric

longitudinal smooth muscle strips, whereas they produce

transient relaxation in the same preparations when precon-

tracted by carbachol (Cocks et al., 1999b; Sekiguchi et al.,

2006). In isolated mouse small intestine, agonists for PAR2 or

PAR1 elicit transient relaxation followed by contraction

(Sekiguchi et al., 2006). It has been confirmed that any

responses to PAR2 agonists, as shown in GI smooth muscle

preparations from wild-type mice, completely disappear in

the preparations from PAR2-deficient animals (Sekiguchi

et al., 2006). In rat duodenal preparations, PAR2 agonists

produce slowly developing and persistent contraction, while

PAR1 agonists cause prompt relaxation followed by strong

contraction (Kawabata et al., 1999a). There is also evidence

that either PAR2 or PAR1 agonists elicit contraction and/or

relaxation in colonic smooth muscle preparations (Corvera

et al., 1997; Mule et al., 2002a, b; Sato et al., 2006). Of note is

that PAR4 agonists also contract rat colonic tissue strips

(Mule et al., 2004). In rat oesophageal muscularis mucosae

preparations, PAR1 agonists produce contraction, while

PAR4 agonists induce relaxation (Kawabata et al., 2000a).

These observations are in agreement with evidence that

thrombin produces contraction and relaxation at high and

low concentrations, respectively (Kawabata et al., 2000a).

Thus, modulation of GI smooth muscle motility by PAR1,

PAR2 and PAR4 is complex, and its physiological and

pathophysiological relevance is still largely open to question.

Of interest is that both PAR2 and PAR1 agonists, adminis-

tered systemically, facilitate GI transit in mice (Kawabata

et al., 2001c), which might predict protective roles for those

receptors activated by endogenous proteinases during in-

flammation. PAR2-mediated relaxation in the colonic

smooth muscle is impaired after colonic inflammation

induced by dextran sodium sulphate (DSS) in rats (Sato et al.,

2006), implying involvement of altered PAR2 functions in

abnormal intestinal motility during intestinal inflammation.

The mechanisms for modulation of GI motility by PARs are

also very complex, involving multiple pathways (Figure 2).

Primarily, PAR1, PAR2 and PAR4 present in muscular cells are

considered to mediate the contractile activity of agonists for

each receptor in the GI smooth muscle. Activation of the

Gq/11-phospholipase Cb pathway following activation of

each PAR should play a central role in causing smooth

muscle contraction (Kawabata, 2002; Mule et al., 2002b;

Ossovskaya and Bunnett, 2004; Hollenberg, 2005). In some

GI preparations, however, endogenous prostanoids formed

by activation of PAR might contribute to the evoked
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muscular constriction through autocrine and/or paracrine

mechanisms (Saifeddine et al., 1996; Zheng et al., 1998;

Sekiguchi et al., 2006). Further, involvement of sensory

neurons has also been suggested in the contractile activity of

PAR agonists in certain regions of the GI tract (Mule et al.,

2003, 2004; Zhao and Shea-Donohue, 2003;Q9 Sekiguchi

et al., 2006). The relaxant activity of PAR agonists in mouse

gastric and rat duodenal and colonic smooth muscle

segments is predominantly attributable to activation of

apamin-sensitive Kþ channels, that is, small-conductance

Ca2þ -activated Kþ channels (Cocks et al., 1999b; Kawabata

et al., 1999a; Mule et al., 2002a; Sekiguchi et al., 2006). The

accelerated GI transit by agonists for PAR2 and PAR1 is also

further enhanced by pretreatment with apamin, suggesting

dual roles (suppression and excitation) of these receptors in

regulation of GI motility in vivo (Kawabata et al., 2001c).

However, other unknown mechanisms should also be

involved in the relaxant effects of PAR agonists in the GI

tract, since apamin exerts partial and no inhibition of the

PAR-mediated relaxation in some intestinal preparations and

rat oesophagenal muscular segments, respectively (Kawabata

et al., 2000a; Mule et al., 2003; Sekiguchi et al., 2006).

Physiological and pathological significance of these complex

mechanisms for PAR modulation of GI smooth muscle

motility has yet to be investigated.

Cellular signalling triggered by PARs in GI epithelial cells

Cellular signal transduction following activation of PAR1 or

PAR2 has been investigated pharmacologically in GI smooth

muscle segments (Zheng et al., 1998; Kawabata et al., 2000b;

Mule et al., 2002b). Apart from cancer cell lines (Darmoul

et al., 2004a, b; Nguyen et al., 2005), cellular signalling

triggered by activation of PARs in normal GI epithelial cells

has not been well understood. As described for the airway or lung

epithelial cells/tissues (Cocks et al., 1999a; Asokananthan

et al., 2002; Kawao et al., 2005), activation of PARs causes

prostanoid formation in the GI tissues/cells (Kong et al.,

1997; Toyoda et al., 2003; Kawabata et al., 2004d; Kubo et al.,

2006; Sekiguchi et al., 2007). In a rat normal gastric mucosal

epithelial cell line, RGM1, which is useful for analysis of

functions of noncancer gastric mucosal epithelial cells, PAR1

agonists, but not PAR2 agonists, cause delayed formation of

prostaglandin E2 (PGE2) accompanied with COX-2 upregula-

tion, although both PAR1 and PAR2 agonists elicit cytosolic

Ca2þ mobilization (Toyoda et al., 2003; Sekiguchi et al.,

2007). The signal transduction mechanisms for PAR1-

triggered upregulation of COX-2 in RGM1 cells involve

persistent activation of the MEK–ERK pathway and EGF

receptors, while other multiple signalling molecules includ-

ing Src, heparin-binding EGF, and COX-1, are also consid-

ered responsible for the PGE2 formation and/or COX-2

upregulation (Sekiguchi et al., 2007) (Figure 3). Similarly, in

SCBN duodenal epithelial cells, Src, EGF receptors, the MEK–

ERK pathway, cytosolic phospholipase A2, and both COX-1-

and COX-2-derived products other than PGF2a or PGE2 are

involved in Cl� secretion caused by activation of PAR1

(Buresi et al., 2002). These complex signalling mechanisms,

particularly activation of the MEK–ERK pathway and EGF

receptors, following PAR1 stimulation in GI epithelial cells

are similar, in part, to PAR2-triggered cell signals in lung

epithelial cells (Kawao et al., 2005).

Roles of PARs in diseases

PAR2 and pancreatic inflammation/pain

As described above, PAR2 is expressed in pancreatic acinar

cells (Kawabata et al., 2002b) and ductal epithelium (Nguyen

et al., 1999), and its activation stimulates pancreatic juice

secretion (Kawabata et al., 2000d). Although PAR2 might not

play critical roles in pancreatic exocrine secretion under

physiological conditions, increasing evidence suggests the

emerging roles played by PAR2 during pancreatitis (Olejar

et al., 2001; Namkung et al., 2004; Maeda et al., 2005; Sharma

et al., 2005a; Matej et al., 2006; Kawabata et al., 2006b; Singh

et al., 2007). PAR2 expression in the pancreas appears to

increase during taurocholate-induced acute pancreatic lesion

development in rats, although the physiological relevance of

PAR2 upregulation remains to be determined in this model

(Olejar et al., 2001). Systemic administration of PAR2

agonists suppresses caerulein-induced acute pancreatitis in

rats and mice (Namkung et al., 2004; Sharma et al., 2005a;

Kawabata et al., 2006b). PAR2-deficient mice exhibit more

severe inflammatory signs than wild-type animals in a

relatively severe pancreatitis model induced by 12 hourly

injections of caerulein at 50 mg kg�1 (Sharma et al., 2005a),

suggesting a protective role for activation of PAR2 by

endogenous proteinase such as trypsin. However, the

difference in the severity of inflammatory symptoms

between PAR2-deficient and wild-type animals is not clear

in a mild pancreatitis model induced by 6 hourly injection of

caerulein at the same dose (Kawabata et al., 2006b). The
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protective mechanisms for PAR2 in pancreatitis appear to, at

least in part, involve inhibition of translocation of phos-

phorylated ERK to the nucleus in pancreatic cells (Sharma

et al., 2005a), although phosphorylation of ERK in whole

cells is unaffected or rather facilitated by PAR2 activation

(Namkung et al., 2004; Sharma et al., 2005a). The most recent

evidence indicates that trypsin released during the early

stages of pancreatitis activates PAR2 on the acinar cells and

stimulates secretion of digestive enzymes including trypsi-

nogen from these cells, leading to decreased intrapancreatic

enzyme levels and limitation of the severity of pancreatitis

(Singh et al., 2007) (Figure 4). In contrast, a study using anti-

PAR2-antibodies implies a pro-inflammatory role for PAR2 in

caerulein-induced pancreatitis in rats (Maeda et al., 2005),

which is inconsistent with evidence from studies employing

PAR2-activating peptides and PAR2-knockout mice. Although

the discrepancy has yet to be explained, it is likely that

trypsin-induced activation of PAR2 present in intrapancreatic

sensory neurons (Steinhoff et al., 2000; Hoogerwerf et al.,

2001) might promote inflammation, since pancreatitis

appears to involve neurogenic inflammation (Nathan et al.,

2001, 2002; Hutter et al., 2005). There are plenty of clinical

and fundamental studies showing that inhibitors of pancrea-

tic proteinases that are capable of activating PAR2 improve

acute pancreatitis (Iwaki et al., 1986; Otsuki et al., 1990;

Harada et al., 1991; Takeda et al., 1996; Chen et al., 2000;

Maeda et al., 2005; Ishikura et al., 2007).

Clinically, acute pancreatitis is accompanied with a sharp

and severe pain from the upper abdominal area to the back,

and treatment of the pancreatitis-related pain is very

important. Apart from pancreatitis itself, PAR2 expressed in

sensory neurons is involved in pancreatic pain (Hoogerwerf

et al., 2001, 2004; Kawabata et al., 2006b; Ishikura et al.,

2007). Administration of PAR2-activating peptides and

trypsin into the pancreatic duct causes activation of

nociceptive neurons, as measured by expression of Fos

protein, in the superficial layers of the thoracic spinal cord

in anesthetized rats, and induces a behavioural pain response

in awake rats (Hoogerwerf et al., 2001, 2004; Ishikura et al.,

2007). The ductal trypsin-evoked spinal Fos expression can

be blocked by pretreatment with camostat mesilate, a

proteinase inhibitor (Ishikura et al., 2007). The mice with

mild pancreatitis caused by 6 hourly repeated systemic

administration of caerulein exhibit referred hyperalgesia in

the skin of the upper abdomen. This referred hyperalgesia

during the mild pancreatitis can be abolished by not only

repeated but also single administration of the proteinase

inhibitor, camostat mesilate (Ishikura et al., 2007), and

nafamostat mesilate (Kawabata et al., a manuscript in

preparation). This suggests a possibility that endogenous

proteinases including trypsin might directly stimulate PAR2

present in intrapancreatic sensory neurons during pancrea-

titis, resulting in pancreatic pain/referred hyperalgesia

(Figure 4). Nonetheless, the referred hyperalgesia during

the pancreatitis in PAR2-knockout mice is more severe than

that in wild-type animals, while the inflammatory symp-

toms in this mild pancreatitis model are not significantly

different between the PAR2-knockout and wild-type animals

(Kawabata et al., 2006b). Further, repeated co-administration

of PAR2-activating peptides with caerulein suppressed the

referred hyperalgesia in wild-type animals, but not PAR2-

knockout mice. Thus, the role of PAR2 in pancreatitis-related

pain is very complex. One possibility is, as mentioned above,

that trypsin released during the early stages of pancreatitis
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might stimulate PAR2 on the acinar cells and decrease

intrapancreatic levels of nociceptive mediators including

trypsin through enhancement of exocrine secretion of acinar

cell contents such as trypsinogen into the duodenum

(Figure 4). In PAR2-knockout mice, however, receptors other

than PAR2 expressed in intrapancreatic sensory neurons

should mediate the actions of trypsin and/or the other

unknown nociceptive messengers present in the acinar cells

(Figure 4). It is likely that PAR4 might mediate the

nociceptive actions of trypsin and kallikrein released from

the acinar cells, since PAR4 can be activated directly by those

acinar cell enzymes (Kawabata, 2002; Ossovskaya and

Bunnett, 2004; Oikonomopoulou et al., 2006a, b).

Bradykinin B2 receptors could also mediate the nociception

through the kallikrein–bradykinin pathway, known to be

activated during pancreatitis (Griesbacher and Lembeck,

1992; Griesbacher et al., 2002), since even a single dose of

HOE-140, a B2 receptor antagonist, partially inhibited the

established referred hyperalgesia during pancreatitis in mice

(Kawabata et al., unpublished data). These hypotheses have

yet to be evaluated by more in-depth studies. Together,

proteinase inhibitors and PAR2 antagonists, if available,

might be clinically useful for the treatment of pain

accompanying established acute pancreatitis, although the

use of PAR2 antagonists might not be recommended in the

early stages of acute pancreatitis. Interestingly, there is

clinical evidence that proteinase inhibitors such as nafamo-

stat mesilate and gabexate mesilate are highly effective

against established acute pancreatitis-related pain (Harada

et al., 1991; Takeda et al., 1996; Chen et al., 2000).

PARs and mucosal injury/protection in the oesophagus, stomach

and colon

PARs, particularly PAR2 and PAR1, play emerging roles in

maintenance of mucosal integrity and/or pathogenesis of

mucosal inflammation/injury throughout the GI tract

including the oesophagus (Kawabata, 2002, 2003; Ossovs-

kaya and Bunnett, 2004). Systemic administration of

PAR2 agonists exerts gastric mucosal cytoprotection in rat

gastric injury models induced by HCl/ethanol and by

indomethacin, an effect that is abolished by ablation of

capsaicin-sensitive sensory nerves (Kawabata et al., 2001b).

This is in agreement with evidence that PAR2 agonists

stimulate neurally-mediated gastric mucus secretion in rats

(Kawabata et al., 2001b), as mentioned above. It is also

noteworthy that PAR2 stimulation causes vasorelaxation in

isolated gastric artery in vitro and enhances gastric mucosal

blood flow in vivo (Kawabata et al., 2001b, 2003, 2004c).

Inhibition of gastric acid secretion by PAR2 agonists

(Nishikawa et al., 2002) might also contribute to prevention

of gastric mucosal injury in certain models. Ultimate

evidence for involvement of PAR2 in gastric mucosal

protection has been obtained from a study showing that

protective effects of PAR2 agonists on HCl/ethanol-induced

gastric mucosal injury is detectable in wild-type mice, but

not PAR2-knockout mice, although the extent of the evoked

gastric mucosal damage is not different between wild-type

and PAR2-knockout animals (Kawabata et al., 2005). PAR1

agonists also protect against gastric mucosal injury produced

by HCl/ethanol in rats (Kawabata et al., 2004d). Interestingly,

the protective effect of PAR1 agonists, unlike PAR2 agonists,

is independent of sensory neurons, but is mediated by COX-

1-derived endogenous prostanoids (Kawabata et al., 2004d).

It is noteworthy that PAR1 agonists exert prostanoid-

dependent suppression of carbachol-evoked acid secretion

in rats (Kawabata et al., 2004d), and that PAR1 stimulation is

also capable of relaxing isolated rat gastric artery in vitro and

enhancing gastric mucosal blood flow in rats in vivo

(Kawabata et al., 2004c, d). Thus, both PAR2 and PAR1 are

considered protective in gastric mucosa, at least, in animal

models. Although there is limited clinical evidence for roles

of PARs in human gastric mucosa (Fujimoto et al., 2006;

Arisawa et al., 2007), studies using human cancer-derived cell

lines imply that PARs are associated with cancer cell

proliferation (Caruso et al., 2006) and involved in inflam-

matory responses, particularly after infection with Helico-

bacter pylori (H. pylori) (Yoshida et al., 2006b; Seo et al., 2007).

As described above, delayed upregulation of COX-2 followed

by prostaglandin E2 formation in response to stimulation of

PAR1, but not PAR2, is detectable in RGM1 cells, a rat

noncancer gastric mucosa epithelial cell line (Toyoda et al.,

2003; Sekiguchi et al., 2007). This evidence is not necessarily

consistent with our in vivo finding that PAR1 agonists exerted

gastric mucosal protection in a manner dependent on COX-1,

but not on COX-2, in a rat model (Kawabata et al., 2004d).

Recently, involvement of PAR2 in oesophageal inflamma-

tion has been suggested by studies using laboratory animals

(Naito et al., 2006) and cultured normal human oesophageal

epithelial cells (HEECs) derived from an established cell line

(Yoshida et al., 2007). Therapeutic usefulness of camostat

mesilate, a proteinase inhibitor, has been emphasized in

these studies. Gastroesophageal reflex disease (GERD) is one

of the most common GI diseases in the Western and Asian

countries. PPIs recognized as the mainstay of medical

therapy for GERD, may not completely improve oesophageal

mucosal breaks and symptoms such as heartburn, and some

patients, even if treated with PPIs for maintenance therapy,

may have a relapse of oesophagitis (Chiba, 1997; Naito et al.,

2006). In this context, PAR2 and/or its agonist proteinases

may be promising therapeutic targets for the treatment of

GERD including erosive and nonerosive reflux diseases.

PAR2 and/or PAR1 play dual roles in the development of

intestinal inflammation, given that they are pro- and anti-

inflammatory. There is evidence that intracolonic adminis-

tration of PAR2-activating peptides dissolved in ethanol is

capable of inducing colitis (Cenac et al., 2004). The pro-

inflammatory role of PAR2 and its agonist proteinases has

been described in mouse models for Citrobacter rodentium-

induced colitis (Hansen et al., 2005) and for Clostridium

difficile toxin A-induced enteritis (Cottrell et al., 2007). In

contrast, the anti-inflammatory/protective role of PAR2 has

been suggested in a mouse model for inflammatory bowel

disease (IBD) induced by 2,4,6-trinitrobenzene sulphonic

acid (TNBS) (Fiorucci et al., 2001) and in rat and mouse

models for ischaemia/reperfusion-induced intestinal tissue

injury (Cattaruzza et al., 2006). Nonetheless, there is

evidence that intracolonic administration of a proteinase

inhibitor, nafamostat mesilate, improves TNBS-induced

colitis (Isozaki et al., 2006). Clinical studies show that PAR2
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might be involved in the pathogenesis of IBD, particularly

ulcerative colitis (Kim et al., 2003; Yoshida et al., 2006a), and

that anti-tryptase therapy using a daily nafamostat mesilate

enema for 2 weeks has beneficial effects for the treatment of

human IBD (Yoshida et al., 2006a). PAR1’s pro-inflammatory

role has been reported in animal models and cultured

epithelial cells, that is, PAR1 agonists induce epithelial

apoptosis and increases intestinal permeability (Chin et al.,

2003). In contrast, anti-inflammatory roles for PAR1 have

been described in a rat model for intestinal ischaemia/

reperfusion injury (Tsuboi et al., 2007) and in a mouse model

for colitis mediated by a type II immune response (Cenac

et al., 2005). Thus, PAR2 and PAR1 are considered as key

molecules in the maintenance and/or disruption of intest-

inal mucosal integrity.

PAR2 and colonic pain

As described above, PAR2 is expressed in capsaicin-sensitive

sensory neurons, and involved in the processing of either

somatic or visceral pain (Vergnolle et al., 2001; Kawabata

et al., 2001a, 2002a, 2004a; Coelho et al., 2002; Kawao et al.,

2002b, 2004). Intracolonic administration of PAR2-activat-

ing peptides or trypsin produces delayed (10–24 h after

administration) hyperalgesia in a rat colorectal distension

model (Coelho et al., 2002), and also delayed (6 h or more

after administration) hypersensitivity to intracolonic admin-

istration of capsaicin in mice (Kawao et al., 2004). The

delayed hyperalgesia to capsaicin after PAR2-activating

peptides and trypsin is not detectable in PAR2-knockout

mice (Kawabata et al., 2006a). Activation of PAR2 on colonic

nociceptive neurons causes sustained hyperexcitability

through activation of PKC and ERK (Kayssi et al., 2007).

However, the extremely slow (6 h or more) onset of hyper-

algesia after intracolonic administration of PAR2 agonists

implies the possibility that activation of non-neuronal

PAR2 might cause release of nociceptive messengers, leading

to delayed and sustained neuronal hyperexcitability.

The bradykinin-B2 receptor pathway might mediate the

PAR2-triggered delayed hyperalgesia (Kawabata et al., 2006a).

Most recently, two independent clinical studies indicate

that mucosal mast cell mediators in colonic biopsies from

patients with irritable bowel syndrome (IBS) excite rat

nociceptive visceral sensory nerves (Barbara et al., 2007),

and that intracolonic administration of human colonic

biopsy supernatants from IBS patients, but not controls,

causes delayed visceral hyperalgesia in a mouse colorectal

distension model (Cenac et al., 2007). In the latter study, the

pro-nociceptive effect of IBS patients’ biopsy supernatants is

blocked by proteinase inhibitors or a PAR2 antagonist, and is

absent in PAR2-knockout mice (Cenac et al., 2007). These

studies strongly suggest that proteinases released from colonic

mucosa generate hypersensitivity symptoms through activation

of PAR2 in IBS patients.

Summary and conclusions

As described so far, PARs and their agonist proteinases are

involved in a variety of GI functions. In addition to the

original roles for PAR1 and PAR4 in mediating thrombin-

induced aggregation in human platelets (PAR3 and PAR4 in

rodent platelets), we now have to consider modulation of

ion secretion, smooth muscle motility and mucosal integrity

by these receptors in the GI systems, when agonist

proteinases including thrombin become accessible to the

target receptors, for instance, during inflammation. PAR2, a

receptor activated by trypsin, tryptase and many other

endogenous and exogenous proteinases, plays an extensive

and critical role in regulation of GI exocrine secretion. In

addition to PAR2 present in non-neuronal cells, PAR2

expressed on sensory neurons is involved in regulation of

GI smooth muscle motility and exocrine secretion, and in

modulation of GI mucosal integrity and processing of

visceral pain sensation. Together, PARs are considered key

molecules in regulation of GI functions, and could be targets

for development of drugs for treatment of various GI

diseases.
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